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The effects of nuclear motion on the magnetic susceptibility and rotational magnetic moments of H2, HD, 
and D2 are considered. The magnetic susceptibility and the rotational magnetic moment have been evaluated 
as a function of the internuclear distance by a variational procedure using the accurate wave functions of 
Kolos and Roothaan. A careful vibrational averaging has been performed to obtain these magnetic properties 
for H2, HD, and D2 in a number of vibrational-rotational states. A critical test of these calculations is 
provided by a comparison of the calculated {jiRe)vtj$ (electronic contribution to the rotational magnetic 
moment) with experiment. While our one-parameter variational calculations only account for 70% of the ex­
perimental {/j,Re)v, j's, ratios of the calculated (p.Re)v, J'S between the three isotopic molecules in their respec­
tive vibrational-rotational states are in remarkable agreement with the experimental ratios (within 0.3%). 
A similar vibrational averaging of fiRe(R) obtained by Espe using a four-parameter variational calculation 
based upon the zero-order wave function of Newell indicates that while the theoretical {iiRe)v, j ' s are now 
within 10% of the experimental values, the ratios of the (me)v, j's are not in as good agreement with experi­
ment. The implication of these results on the molecular-beam method of obtaining molecular dipole mo­
ments from isotopic variations of the rotational magnetic moment is discussed. 

INTRODUCTION 

MOTION of the nuclear framework, namely vibra­
tional motion and centrifugal stretching of mole­

cules, can have significant effects on electric and mag­
netic properties of molecules. The influence of zero-point 
vibration on the nuclear quadrupole interaction in 
molecules has received early attention and has been in­
vestigated quite extensively.1,2 More recently, the ef­
fects of nuclear motion on magnetic properties as well 
as other electrical properties have also been considered. 
Notable contributions have been made by Newell,3 

Ramsey,4-6 Ishiguro,7-9 Marshall,10 and Auffray.11 

For a few molecules, it is possible to make ab initio 
calculations of an electric or magnetic property as a 
function of the nuclear coordinates. In these instances, 
the effects of the nuclear motion are generally taken into 
consideration by performing the appropriate vibrational 
average. More frequently, however, such vibrational 
averages are not readily evaluated due to lack of 
knowledge of the dependence of the property concerned 
on the molecular geometry. For such situations, Ramsey 
has assumed, in the case of a diatomic molecule, that the 

* This work is supported by the National Science Foundation. 
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property of interest can be expressed as Fe(R/Re)
n, 

where Fe is the value of the property at the equilibrium 
internuclear distance and R/Re the ratio of the instan­
taneous internuclear distance to its equilibrium value.5 

An assumption of this type was first introduced by 
Newell3 in his vibrational averaging of the high-fre­
quency part of the magnetic shielding constant in H2. 
Ramsey has extended this assumption to the high-fre­
quency part of the magnetic susceptibility and to the 
electronic parts of the spin-rotational constant and the 
rotational magnetic moment. 

The theory of Ramsey is particularly adaptable to 
the interpretation of experimental results from molecu­
lar-beam experiments.6 Thus, Ramsey and his co­
workers have empirically determined n for the electronic 
contribution to the rotational magnetic moment as 
well as the high-frequency part of the magnetic suscepti­
bility in H2 from precise molecular-beam measurements 
of the rotational moments of H2, HD, and D2 . Consistent 
results appeared to be obtained both from the variations 
of the rotational moment with rotational quantum num­
ber and isotopic mass. 

While these consistencies perhaps lend support to 
Ramsey's simplifying assumption, its usefulness has 
merely been demonstrated in a single case and its gen­
eral applicability may be questionable. This point has 
recently been raised in an article by Russell12 concerning 
the determination of electric dipole moments of some 
molecules from changes in the rotational moment upon 
isotopic substitution. As indicated by Russell, the calcu­
lated dipole moment can be affected appreciably if one 
neglects the effects of vibrational motion on the rota­
tional moment. In the case of LiF, Russell showed that 

1 A. Russell, J. Chem. Phys. 37, 214 (1962). 
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when Ramsey's assumption was employed, an abnor­
mally high value of n had to be used. While there exists 
in this case the possibility that the equilibrium inter-
nuclear distance may not be accurately determined, it 
is also likely that Ramsey's assumption is invalid. 

I t is the purpose of the present paper to show that 
one can obtain a fair estimate of vibrational effects and 
their variation with isotopic substitution from ab 
initio calculations. Such a calculation will obviate the 
simplifying assumptions proposed by Ramsey. In those 
cases where n has been determined empirically within 
the framework of Ramsey's theory, the results will also 
serve to check the depicted variation of the magnetic 
property with internuclear distance. Quite often dif­
ferences in the zero-point motions between isotopic 
species and centrifugal stretching effects are too small 
to produce an observable change in the magnetic 
property under study, in which case a calculation from 
first principles represents the only way to estimate these 
vibrational effects. 

For this investigation, the molecules H2, HD, and D 2 

have been chosen for several reasons. First, accurate 
ground-state wave functions are now available for the 
hydrogen molecule over a wide range of internuclear 
distances. Among these are Kolos and Roothaan's 
single-configuration-28-term function13 and Fraga and 
RansiPs LACO-MO function with configuration inter­
action.14 Secondly, as mentioned earlier, precise molecu­
lar-beam data exist for these molecules in a number of 
vibration-rotational states. Finally, these molecules 
do not possess electric dipole moments so that the 
electronic contribution to the rotational magnetic mo­
ment may be calculated directly from an appropriate 
average of the high-frequency part of the magnetic 
susceptibility. A comparison of the calculated rotational 
magnetic moment with experiment then serves as an 
indication of the accuracy of ab initio calculations of 
the vibrational effects and permits an evaluation of their 
utility in the determination of dipole moments of 
heteronuclear diatomic molecules from molecular-beam 
studies of rotational magnetic moments. 

In this work, we are primarily concerned with evaluat­
ing the rotational magnetic moment of H2 as a function 
of the internuclear distance. In this connection, we need 
only worry about the electronic contribution since the 
nuclear contribution is independent of the internuclear 
separation. Ramsey5 has shown that the electronic con­
tribution to the rotational moment (XR6, is related to 
XP(R)/R2, where xp is the high-frequency part of the 
magnetic susceptibility. Thus, our problem reduces to 
the evaluation of %p as a function of the internuclear dis­
tance. Conventional second-order perturbation theory 
cannot be used here since xp entails a knowledge of ex­
cited-state wave functions and energies, and these are, 
in general, not known even at the equilibrium inter-

13 W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 231 
(1960). 

14 S. Fraga and B. L Ransil, J. Chem. Phys. 35, 1967 (1961). 

nuclear separation. On the other hand, variational 
methods have proved to be much more successful15'16 

since they require only a knowledge of the ground-state 
wave function and a convenient choice of the variational 
function to represent the perturbed molecule. In fact, 
Espe17 has already undertaken a four-parameter varia­
tional calculation for the electronic contribution to the 
rotational magnetic moment in H2 using NewelPs 
ground-state function.2 However, Espe considered only 
three internuclear distances (1.3#o, lAao, and 1.5#o) 
and it is felt that more points are desirable for a reliable 
vibrational averaging. More important, we question the 
accuracy of the Newell function, and felt that it is worth­
while to try out a set of wave functions which have been 
proven to be more accurate over a wide range of inter­
nuclear distances. For these reasons, we have under­
taken a variational calculation for xp using the wave 
functions of Kolos and Roothaan.13 

In our present calculations, the diamagnetic part of 
the susceptibility will also be evaluated using the wave 
functions of Kolos and Roothaan. An explicit vibrational 
averaging of this ground-state term in the susceptibility 
has already been reported by Auffray.11 These calcula­
tions are repeated here as our method of vibrational 
averaging is different from Auffray's and we employ 
an empirical potential function rather than a theoretical 
one. 

For the motional averaging, two different empirical 
expressions for the vibrational potential will be con­
sidered. The calculations will also be performed both 
with and without the consideration of centrifugal 
effects and for a number of rotational states. The 
computer program that we have for the motional averag­
ing is quite general and can be used for a potential 
function expressed in any functional form. This feature 
will allow us to perform vibrational calculations for 
molecules where the Morse potential does not provide 
an adequate description of the potential surface. Such 
is the case for the alkali halides18 and hydrides,19,20 e.g., 
LiF and LiH. Our computer program can also be readily 
modified to include more than one vibrational degree of 
freedom. This flexibility is desirable since magnetic 
properties are currently being measured for more compli­
cated molecules. Furthermore, while one might expect 
stretching vibrations to perturb the electronic system 
significantly, other modes, in particular bending ones, 
are more easily excited and their effects are therefore 
more readily observed. For these vibrations, because 
of their larger vibrational amplitudes and their larger 
anharmonicities, the simple harmonic oscillator or the 
Morse potential is surely inadequate. 

15 T. P. Das and R. Bersohn, Phys. Rev. 115, 897 (1959). 
16 M. Karplus and H. J. Kolker, J. Chem. Phys. 38, 1263 (1963). 
1 7 1 . Espe, Phys. Rev. 103, 1254 (1956). 
18 E. Rittner, J. Chem. Phys. 19, 1030 (1951). 
19 W. A. Klemperer and T. L. Margrave, J. Chem. Phys. 20, 527 

(1952). 
20 Y. P. Varshni and R, C. Shukla, Rev, Mod. Phys. 35, 130 

(1963). 
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I. GENERAL PROCEDURE 

Before we can perform the appropriate averaging of a 
molecular property over the nuclear motion, we must 
first know the property as a function of the nuclear co­
ordinates. This implies, of course, that the electronic 
wave functions be known for many nuclear configura­
tions. In performing the vibrational averaging, it is 
assumed that the Born-Oppenheimer approximation is 
valid. That is, 

faota,l = \fse(R)MR, (1 ) 

where \f/e(R) is the electronic wave function for a nuclear 
configuration described by R. The average of a molecu­
lar property 0 which depends both on the electronic 
and nuclear coordinates is then given by 

<0(A)>= Ue*(R)fo*+R*OMR)^RdTRdTe 

= Uv**R*0(R)MRdTR, (2) 

where r 
0(R) = U,*(R)Of<(R)dr.. 

dre is the volume element over electronic coordinates 
and drn over nuclear coordinates. 

Let us assume that O(R) has already been determined. 
We then have to consider how to perform the averaging 
over the nuclear wave function. Let us illustrate for a 
diatomic molecule where there is only one mode of vibra­
tion. For a given potential function the eigenvalues and 
eigenfunctions of the Hamiltonian for this nuclear mo­
tion can be obtained by variational methods. A con­
venient variational function would be to expand each 
nuclear eigenfunction \f/v as a linear combination of a 
complete orthonormal set of functions. The combination 
coefficients can be obtained from solution of the secular 
equations. When the potential is expressed as a Taylor's 
expansion, convenient complete sets to use are the 
harmonic oscillator21 or quartic oscillator eigenfunc­
tions,22 for which the matrix elements of xn or (R—Re)

n 

are known. In practice, one chooses a basis set for which 
the matrix elements of the Hamiltonian are conveni­
ently obtained. Of course, the rapidity of convergence 
also dictates the choice of the basis set. Once the eigen­
functions for the actual nuclear Hamiltonian are known 
as linear combinations of basis functions, one can easily 
obtain the expectation values of xn over the nuclear 
functions. This then permits the evaluation of (0(R)) 
since O(R) can be expanded in a Taylor's series in terms 
of the displacement coordinate. Thus, 

{0(R)) = 0(R.)+j: (—) {{R-ReY)/n\. (3) 
n-l \dRnJRe 

21 E. B. Wilson, Jr., J. C. Deems, and P. C. Cross, Molecular 
Vibrations (McGraw-Hill Book Company, Inc., New York, 1955), 
p. 290. 

22 S. I. Chan and.D. Stelman,jJ. Mol. Spectry. 10, 278 (1963). 

Extension of the above approach to a triatomic mole­
cule is relatively straightforward. Here normal coordi­
nates will be employed. If the vibrational Hamiltonian 
is separable in normal coordinates, each normal mode 
can be treated independently. If interactions between 
normal modes are significant, these interaction terms 
can be included as a perturbation to the zeroth-order 
problem. The vibrational wave function to be employed 
for the averaging would then be the zeroth-order wave 
function constructed of product functions from each 
mode plus correction terms arising from the mixing of 
modes. Only first-order mixing of normal modes is usu­
ally more than adequate in practice. The vibrational 
averaging is analogous; thus, for a bent triatomic 
molecule, 

3 /dO\ 
<O(Qi,g2,ea)> = O ( 0 , 0 , 0 ) + E ( — ) <&) 

*-i \dQk/o 

3 3 / d20 \ 

+ I Z Z —— J <&&>+•••, (4) 
*- i* - i XdQjdQk/o,o 

where j , k refer to the 7th and &th normal modes. 
The above techniques are of course well known to the 

molecular spectroscopist, and probably not unfamiliar 
to those engaged in the calculations of magnetic 
properties. Except for the method of obtaining the 
vibrational wave function, our present approach is 
actually quite similar to Newell's calculations2 on the 
quadrupole coupling constant of HD, Ishiguro's calcu­
lations7 on the electric polarizability of H2, HD, and D2 , 
Ishiguro's calculations8 on the electron-coupled spin-
spin constant in HD, Ishiguro's calculations9 on the ro­
tational magnetic moment, and Marshall's calculations10 

on the nuclear magnetic shielding constant of H2. 
However, in this work, in order to ensure convergence, 
the series expansion given by (3) has been taken up to 
the x6 term instead of the first two or three terms em­
ployed by other research workers. 

II. VIBRATIONAL WAVE FUNCTIONS FOR THE 
HYDROGEN MOLECULE 

A number of empirical potential functions are avail­
able for H2, most notably the Morse potential,23 the 
Dunham potential,24,25 the Lippincott potential,26 and 
the Hulburt-Hirschfelder function.27 While these are 
not exact representations of the actual potential sur­
face, they are quite adequate for our purposes, as is 
evident when these potentials are compared at small 
vibrational amplitudes ( < 0.5^4) with the " t rue" 
potential obtained using the Rydberg-Klein-Rees 

23 P. M. Morse, Phys. Rev. 34, 57 (1929). 
24 J. L. Dunham, Phys. Rev. 41, 713, 721 (1932). 
25 B. P. Stoicheff, Can. J. Phys. 35, 730 (1957). 
26 E. R. Lippincott, J. Chem. Phys. 21, 2070 (1953); E. R. 

Lippincott and R. Schroeder, ibid. 23, 1131 (1955); D. Steele and 
E. R. Lippincott, ibid. 35, 1065 (1961). 

27 H. M. Hulburt and J. O. Hirschfelder, J. Chem. Phys. 9, 61 
(1941). 
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method.28 Of the above empirical potentials, the Morse 
and Dunham functions are particularly convenient 
for our present interests. In this work, calculations have 
been performed for both potential functions. 

The Morse potential can be expanded in a Taylor 
series about the equilibrium internuclear distance. 
The Dunham potential is already in the above form. 
In either case, the vibrational Hamiltonian is given by 

3C = h Z <*>nOCn. 
2\X w=2 

(5) 

In this work, we have truncated the potential energy 
after the xQ term. Errors due to this truncation will be 
discussed later. 

The following transformation,22 

X=(Sfxa2/¥)^x} 

P=(2/na2W)mP, 
(6) 

reduces the computation to dimensionless variables. 
Thus, 

h/2a2\
ll2i 

5C=-[ — 1 \P2+X2 h/2a2\
ll2( 

±7) Y 
/ n \ 1 / 2 / h2 \nli I 

+ E*»( —) — x»\ 
rc=3 \2aJ \8ua2/ i 

(7) 

For H2 the Morse/Dunham function can be shown to 
reduce to 

3C= (1100.1 cm"1) P2+X2 

0.0012176 

0.16951 0.016761 
0.18789 0.025826 

0.000071094 
0.003368 0.00043220 

(8) 

Analogous expressions hold for HD and D2. Since Xn 

are reduced variables independent of \x and potential 
constants, one set of matrix elements are applicable to 
all the isotopes. For different isotopes, we have merely 
different constants to work with. 

The above transformation has facilitated calculations 
in the harmonic-oscillator representation, since P2+X2 

is diagonal in this representation. The anharmonicity 
of the potential well in our case is such that reasonable 
convergence in the computations may be obtained by 
treating the oscillator as a slightly perturbed harmonic 
oscillator. For larger anharmonicities, the quartic repre­
sentation may be conveniently employed.22,29 

We have so far restricted our discussion to the vibra­
tional motion alone. However, for a rotating diatomic 
molecule, the vibrational Hamiltonian should be modi­
fied to include the effects of the centrifugal potential. 
This effect is easily taken into consideration as 

28 J. T. Vanderslice, E. A. Mason, W. G. Maisch, and E. R. 
Lippincott, J. Mol. Specty. 3, 17 (1959). 

29 S. I. Chan, D. Stelman, and L. E. Thompson (unpublished). 

fi2(J)(J+l)/2fxR2 can be expanded about the equilib­
rium distance Re. Terms containing (R—Re)

n can be 
added to the vibrational potential to yield an effective 
potential for the nuclear motion. 

The following results have been obtained with the 
Hamiltonian matrix set up in the harmonic-oscillator 
representation. Twenty basis functions were employed. 
That is, 

*.= E Tn^n^°. (9) 

Diagonalization was carried out on an IBM-7090 
computer. A check on convergence was provided by the 
magnitude of the coefficient TwlV. For v=0, 1, and 2, 
r19,v«io-7-io-6. 

The expectation values of xn in the diagonal represen­
tation are easily obtained from a similarity transforma­
tion. Thus, 

<xw)=T-1xwH0T. (10) 

These expectation values are extremely sensitive to the 
accuracy of the wave function. This is particularly the 
case with expectation values of odd powers of x, since 
in the harmonic-oscillator representation, these expecta­
tion values are by symmetry equal to zero and a small 
asymmetry in the potential well will make these (xn) 
nonzero. This slight asymmetry may cause a similar 
absolute change in the expectation values of even powers 
of x. However, since these are already finite in the origi­
nal representation, the percentage correction is an order 
of magnitude smaller. Thus, matrix elements of even 
powers of x are relatively insensitive to the accuracy of 
the wave function compared to those involving odd 
powers of x. By the same token, since wave functions 
are determined by the nature of the potential well, 
these expectation values are extremely sensitive to the 
potential well. For instance, truncation of Morse po­
tential expansion beyond the cubic term can be shown10 

to give a (#)o,o which is 30% too low. The mean-square 
displacement is about 10% off in the same calculation. 

In Table I, we have tabulated the expectation values 
of Xj X , X , X , X , and #6 for H2, HD, and D2. Results are 
given for a number of vibrational and rotational states. 
Only the values obtained employing the Morse function 
are presented. Corresponding expectation values for the 
Dunham potential appear to be less reliable judging 
from the accuracy with which the first few energy levels 
are reproduced by this potential function. In general, 
the two sets of expectation values differed in the second 
or third figure depending upon whether the operator xn 

is odd or even. 
In Table II, the first few energy levels determined 

from the two potential functions presently under study 
are compared with experiment. It is clear that the Dun­
ham potential is less satisfactory than the Morse func­
tion if the energy is used as a criterion for the applica­
bility of the potential function. 
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TABLE I. Expectation values of powers of the vibrational displacement tor H2, HD, and D2.14 

X101 X101 ((R-R,y) 
X102 

W-ReY) 
X102 {(R-ReV) 

X103 ((R-R*)6) 
X103 

H2 

»=1 

HD 
v=0 

D2 
v=0 

J=0 
1 
2 

/ = 0 

7 = 0 
1 

7 = 0 
1 

0.42735 
0.44964 
0.49402 
1.3178 

0.36924 
0.38588 

0.30064 
0.31168 

0.30196 
0.30421 
0.30899 
1.0410 

0.25793 
0.25938 

0.20716 
0.20794 

0.45382 
'0.47469 
0.51679 
3.2441 

0.33678 
0.35004 

0.22169 
0.22872 

0.29158 
0.29630 
0.30628 
2.0437 

0.21124 
0.21385 

0.13505 
0.13618 

0.80012 
0.83489 
0.90596 
9.3099 

0.50816 
0.52685 

0.26923 
0.27707 

0.50013 
0.51256 
0.53881 
5.9040 

0.30562 
0.31150 

0.15436 
0.15641 

a Results are for the Morse potential and are given in atomic units. 

As a check on possible errors which may arrive from 
truncation of the series in expression (5), the energy 
levels calculated from the truncated Morse potential are 
also compared with the results of an exact calculation.23 

I t is seen (Table II) that for the two lowest vibrational 
states, these errors are within the margins of discrepancy 
between the experimental and calculated values. A few 
of our calculated expectation values can also be com­
pared with those from an exact calculation as Ishiguro 
and co-workers7 have obtained closed form expressions 
for the matrix elements of x, x2, and xz for the ground 
vibrational state of the Morse oscillator. A comparison 
of our calculated values with those reported by these 
investigators for H2, HD, and D 2 in their respective 
ground vibrational-rotational states reveals good agree­
ment. Discrepancies, which are in the fourth significant 
figure, are most likely due to our truncation of the ex­
panded Morse potential, but may also be due to slightly 
different potential constants employed in the two 
computations. 

TABLE II. A comparison between the calculated and experi­
mental vibrational energy levels of H2. 

v = 0 
v = l 
v = 2 

* See Ref. 

Morse 
Exact Truncated 
cm -1 cm -1 

2168.6 
6316.1 

10 210.7 

22 of text . 

2168.8 
6319.5 

10 234.5 

Dunham 

cm -1 

2180.9 
6378.2 

10 492.7 

Experiment5* 

cm-*1 

2170.08 
6331.20 

10 257.15 

III. CALCULATIONS OF THE SUSCEPTIBILITY AND 
THE ROTATIONAL MOMENT AS A FUNCTION 

OF INTERNUCLEAR DISTANCE 

We next consider the calculation of the susceptibility 
and the rotational magnetic moment of the hydrogen 
molecule as a function of internuclear distance. Kolos and 
Roothaan have already obtained (fc

2) and {3zc
2—rc

2) as a 
function of the internuclear distance using their single-
configuration-28-term function. These expectation 
values are needed in the diamagnetic susceptibility and 

in the variational calculation of the paramegnetic sus­
ceptibility and the rotational moment. re and ze denote 
the electronic coordinates measured from the electronic 
centroid. 

a. Susceptibility 

With the electronic centroid as the origin of the 
magnetic vector potential, 

XL
d=Xxx*=Xyyd= -\aW{y2+z2), 

(ID 
Xn

d=Xzz
d=-laW{x2+y2). 

(xc
2), (y2), and (zc

2) are readily computed from the 
tables of (rc

2) and (3zc
2—rc

2) reported by Kolos and 
Roothaan. 

The paramagnetic susceptibility, 

'xx* = XxxP = Xyy*, (12) 

cannot be rigorously calculated from the ground-state 
wave function. However, using a variational procedure 
proposed earlier,15 an approximate expression may be 
obtained in terms of known expectation values over the 
ground-state function. If 

^a=(l+H.P(£0)W, (13) 
and the perturbation P(£f) is chosen to be 

Px(H) = aiyeze, 

Py(H) = aix<#c, (14) 

where a is the variation parameter, 

Xxx*£$c?at\ (z2-x2)\2/(z2+x2). (15) 

By symmetry, 
Xiip=Xg*p = 0. (16) 

The use of a single variational parameter in the per­
turbation function ¥(H) may cause some concern. 
Karplus and Kolker16 have recently made similar compu­
tations using 1-4 variational parameters and using the 
wave function of Fraga and Ransil. Their calculations 
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were undertaken with the origin of the magnetic vector 
potential at one of the protons. In order to compare their 
results with ours, a translation of the origin has been 
made in the usual manner.30 I t was found that this 
change in gauge accounted for more than 90% of their 
reported31 X^[H~\. Recently, it has been pointed out 
that the paramagnetic susceptibility is a minimum when 
the origin of the vector potential is chosen at the center 
of the electronic charge distribution.30 As a translation 
of the origin is easily made without a knowledge of ^o 
or the perturbation function P, calculations undertaken 
at the centroid of electronic charges provide a better 
absolute check on the convergence of the variation pro­
cedure. In Table I I I , Karplus' results and our present 

TABLE III. The high-frequency part of the magnetic suscepti­
bility of H2. R = Re = lA0aQ (in units of iaW). 

Karplusa 

Espeb 

Present work 

Experimental0 

1 parameter 
2 parameters 
3 parameters 
4 parameters 

1 parameter 
2 parameters 
3 parameters 
4 parameters 

XL*[ff] 

0.4914 
0.5264 
0.5267 
0.5322 

0.5435 

XL*[C] 

0.0010 
0.0360 
0.0363 
0.0418 

0.04222 
0.04536 
0.04674 
0.04756 

0.0374 

0.0531 

» M. Karplus and H. J. Kolker, J. Chem. Phys. 38, 1263 (1963). 
M. Espe, Phys. Rev. 103, 1254 (1956). 
c Computed from Ramsey's rotational moment data [R. G. Barnes, 

P. J. Bray, and N. F. Ramsey, Phys. Rev. 94, 893 (1954)] assuming that 
<XjP (R)/R?) = [XJP (Re)/Re*l(<iR/Re)"). 

values for the equilibrium internuclear separation are 
listed for comparison. I t is seen that while Karplus' 
four-term variation function has accounted for 98% 
of the experimental Xl

p[H~]J it only accounted for 79% 
of Xj.p[C]. Our single-parameter variational calculation 
can be seen to be an improvement over Karplus' three-
parameter calculation. Since the perturbation function 
axczc=axz-\-a(R/2)z£^axz-\-bz, Karplus' two-parameter 
variational function is essentially equivalent to our 
one-parameter function and our better value here may 
be attributed to a more accurate \pe° employed in this 
present work. 

Improvement on our present value of Xj.p[C] may be 
obtained presumably with more parameters in our per­
turbation function. However, the work of Karplus 
seems to indicate that experimental agreement cannot 
be attained with less than three parameters. Espe17 

has shown that one can get about 10% increase in 
X j ^ C ] by using a four-parameter instead of a one-
parameter variational function (see Table I I I ) . How­
ever, even with, this improvement, the calculated value 

30 S. I. Chan and T. P. Das, J. Chem. Phys. 37, 1527 (1962). 
31 [ ] denotes origin of vector potential: [77] for proton, and 

[C] for electronic centroid. 

would still be ^ 2 0 % off from the experimental value. 
The fact that Espe's four-parameter calculation is only 
10% off from the experimental value should perhaps 
not be taken too seriously since his one-parameter 
calculation is already quite good. In fact, it is better 
than Karplus' four-parameter calculation. This better 
agreement is, however, probably accidental, since 
Newell's zero-order function yields a smaller binding 
energy than both Fraga and Ransil's function and Kolos 
and Roothaan's function. In the light of these considera­
tions, and in view of the fact that the aim of the present 
work is not a study of the accuracy and convergence 
of the variational procedure with regard to the calcula­
tion of magnetic properties of molecules, but rather an 
understanding of vibrational effects and their conse­
quences, we have not attempted to improve on our 
one-parameter calculation. 

In the above manner, we have evaluated Xid, Xn
d, 

and Xx
p for internuclear distances of 1.00a0, 1.10a0, 

1.20ao, 1.30a0, 1.35a0, 1.40a0, 1.45a0, 1.50a0, 1.60a0, 
1.70a0, and 1.80<z0. The method of least squares has been 
employed to obtain a power-series expansion of these 
quantities about the equilibrium distance. 

*xxp(R) = Xxxv(Re)+b1x+b2x*+ • • • +h%*+ • 

b. Rotational Moment 

(17) 

For a linear ^ molecule, the rotational moment fiR, 
or the rotational g value gj7 can be obtained from X^ 
as follows32: 

Mi? ( 1 

JlXN U N 

D2-d2 

+ (Efr)——-
N I 

x. p i 
(18) 

Here M is proton mass, I is the moment of inertia about 
the center of mass, £# is the charge of the Nth nucleus, 
and RN is the distance of the iVth nucleus from the nu­
clear centroid. D and d denote respectively the distances 
of the nuclear centroid and electronic centroid relative 
to the center of mass. 

For H2 and D2, the second term in Eq. (18) vanishes 
and the above expression reduces to 

gj'-

fiB 1 4mc2 Xi? 

Jm 2y! eV R2 
(19) 

/ / is the reduced mass of the molecule in proton mass 
units. 

For HD, Eq. (19) is also applicable within the Born-
Oppenheimer approximation. However, when higher 
order corrections are taken into consideration, the 
nuclear and electronic centroids of HD will not vanish. 

32 N. F. Ramsey, Molecular Beams (Oxford University Press, 
New York, 1956), p. 170. 
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TABLE IV. The magnetic susceptibility of H2, HD, and D2 (in units of JCAJO3)-

H2 

HD 

D2 

Present work 
Re 

2=0 7 = 0 
J=l 
J=2 

Auffraya 

v=0 / = 1 
Espef 

Re 

v=0 / = 1 
Experiment 

Re V=0 / = 1 
J=2 

Present work 
2,=0 7 = 0 

7 = 1 
Experiment 
v=0 J=l 

Present work 
v=0 7 = 0 

7 = 1 
Experiment 
v=0 7 = 1 

Xid 

-1.7819 
-1.8298 
-1.8321 
-1.8366 
-1.9333 

-1.837±0.002 

-1.8232 
-1.8249 

-1.8155 
-1.8166 

Xnd 

-1.5238 
-1.5453 
-1.5465 
-1.5489 
-1.5874 

-1.550±0.002 

-1.5424 
-1.5433 

-1.5390 
-1.5397 

Xi*> 

0.03739 
0.04573 
0.04601 
0.04656 
0.06641 

0.0654±0.0006 

0.04756 
0.06259 

0.0531* 
0.0654±0.0003b 

0.0662±0.0005b 

0.04450 
0.04470 

0.0637±0.0002c 

0.04308 
.0.04321 

0.06l7±0.0002b 

X 

-1.6709 
-1.7045 
-1.7062 
-1.7097 
-1.7737 

-1.698±0.002 

-1.685±0.0007d 

-1.6999 
-1.7012 

-1.6946 
-1.6955 

XII —Xi 

0.2207 

0.2396 

0.223±0.001 

0.232±0.013 

0.237 

0.226±0.013« 

0.234 

0.222±0.025b 

* J. P. Auffray, Phys. Rev. 126, 146 (1962). 
b R. G. Barnes, P. J. Bray, and N. F. Ramsey, Phys. Rev. 94, 1893 (1954). 
° W. E. Quinn, J. M. Baker, J. T. LaTourrette, and N. F. Ramsey, Phys. Rev. 112, 1929 (1958). 
d G. G. Havens, Phys. Rev. 43, 992 (1933). Note that the experimental susceptibility is a weighted average over several rotational states. 
eSee footnote c, Table III. 
' I. Espe, Phys. Rev. 103, 1254 (1956). 

We have estimated the order of magnitude of this term 
using the dipole moment function calculated by Blinder33 

and have found its contribution to the HD rotational 
moment to be negligible in importance. 

The nuclear contribution to the rotational moment 
of a diatomic molecule is independent of the internuclear 
distance. Thus, the variation of rotational moment with 
vibrational-rotational state and isotopic mass can be 
completely attributed to the effects of the nuclear mo­
tion on the electronic contribution Xx

p/R2. In Fig. 1, 
our calculated Xl

p(R)/R2 is plotted versus the inter­
nuclear distance R on a semilogarithmic plot. For com­
parison, the "experimental" variation of this quantity 
with internuclear distance as determined by Ramsey's 
molecular-beam studies6 is shown. The latter is a plot 
of the function XX

P{R)/R2= [_Xx
p(Re)/R

2~](R/Re)
n, where 

n has been determined from the variations of the rota­
tional moment with rotational quantum number and 
isotopic mass. The depicted agreement in the shapes of 
the theoretical and experimental curves is striking 
indeed. Since our one-parameter calculation of Xl

p(Re) 
is only 70% of the experimental value, the R dependence 
of these curves is best compared and examined by trans­
lating the calculated curve until it coincides with the 
experimental curve at the equilibrium distance. 

In Fig. 1, we have also plotted the three points from 
Espe's four-parameter calculation at R=l.30, 1.40, 
and 1.50#o. These results seem to fit the experimental 
variation between 1.40 and 1.50a0 quite well. However, 
the variation of Xx

p(R)/R2 between 1.30 and 1.40a0 is 
quite different. The origin of this discrepancy is not 
clear; whether it is due to an error in Espe's variational 
calculation or a property of Newell's ground-state func­
tion cannot be resolved without repeating Espe's 
calculation at 1.30a0 or at some other internuclear dis­
tance less than 1.40ao. 

For purpose of our vibrational averaging, the method 
of least squares has again been employed to obtain a 
power-series expansion of our calculated Xx

p(R)/R2 

about the equilibrium distance. 

IV. RESULTS AND DISCUSSION 

In Table IV, we have tabulated our calculated values 
of (Xx

d), (X,,d), (XLP), and (X) for comparison with experi­
ment. Values are given for H2, HD, and D2 in a number 
of vibrational-rotational states. Where applicable, the 
results of Auffray are also listed. For sake of clarifica­
tion, we point out that Auffray's value34 for (x)o,i is 
based upon a calculation employing Ramsey's experi-

3 S. Blinder, J. Chem. Phys. 32, 105 (1960). 

34 (O)o, i denotes an average of the property O over the vibra­
tional state v — 0 and the rotational state 7 = 1 . 
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TABLE V. The rotational g values of H2. 

A967 

gje Present work 
gje Espe0 

gje Experiment 

gj Present work 
gj Espe 
gj Experiment 

Re 

-0.07625 
-0.09705 

0.92375 
0.90295 

H2 

0 = 0 , 7 = 1 

-0.08250 
-0.11614 
-0.11709 

±0.00007* 
0.91750 
0.88386 
0.88291 
±0.00007* 

0 = 0 , 7 = 2 

-0.08300 
-0.11673 
-0.11774 

±0.00004* 
0.91700 
0.88327 
0.88227 
±0.00004a 

Re 

-0.05720 
-0.07280 

0.69292 
0.67732 

HD 
0 = 0 , 7 = 1 

-0.06118 
-0.08503 
-0.08691 

±0.00001b 

0.68894 
0.66509 
0.66321 
±0.00001b 

Re 

-0.03815 
-0.04855 

0.46210 
0.45170 

D2 

0 = 0 , 7 = 1 

-0.04027 
-0.05509 
-0.05736 

±0.00005a 

0.45998 
0.44516 
0.44288 
±0.00005* 

» R. G. Barnes, P. J. Bray, and N. F. Ramsey, Phys. Rev. 94, 893 (1954). 
b W. E. Quinn, J. M. Baker, J. T. LaTourrette, and N. F. Ramsey, Phys. Rev. 112, 1929 (1958). 
c I. Espe, Phys. Rev. 103, 1254 (1956). 

mental rotational moments and assuming his functional 
dependence of the rotational moment upon internuclear 
distance. Also shown are the results of a vibrational 
averaging of Espe's X^'s. Here, the motional averaging 
was performed after fitting his values of X^ at the three 
internuclear separations to a parabola. 

To illustrate the order of magnitude of vibrational 
effects on the magnetic properties under consideration, 
values of the susceptibilities at the equilibrium inter­
nuclear separation are also included in Table IV. It is 
seen that the effect of zero-point vibration on Xn

d and 
Xx

d is only about 2-3% and is therefore not very marked. 
In contrast, XL

p is a sensitive function of the internuc­
lear distance. For this quantity, there is a correction 
of almost 20% due to the influence of zero-point motion. 
This appears to be true with both Espe's result and our 
one-parameter calculation using the zeroth-order wave 
function of Kolos and Roothaan. The much stronger R 
dependence of xp as compared to xd is understandable, 
since xp involves the angular momentum operator and 
is therefore more sensitive to small changes in the shape 
of the charge distribution. The effects of zero-point 
vibration on the total susceptibility and the rotational 

magnetic moment is not pronounced (at most a few 
percent) as both of these quantites contain large con­
tributions which are either independent of or not 
strongly dependent upon the internuclear separation. 
As expected, the vibrational correction in the first ex­
cited vibrational state is in all cases roughly three times 
as large as the effect of zero-point motion, and the effect 
of centrifugal stretching introduces a small correction 
of an order of magnitude smaller than that due to zero-
point vibration. 

In Table V, theoretical values of gj and gje= (fiRe)/Jjj,N 
for H2, HD, and D2 are listed for comparison with ex­
periment. These expectation values have been obtained 
for the v=0, J=l state and for H2, also for the v=0, 
J=2 state. From these results, it is clear that motional 
averaging leads to improvements in the direction of 
agreement with experiment. The theoretical values of 
(gj), both those obtained using Espe's xip and our 
Xip, are in fairly good agreement with experiment, the 
results from Espe's calculation being somewhat better 
as expected. However, since (gj) in this case involves a 
large contribution from a nuclear term, it is by itself 
not a very sensitive test of the accuracy of ob initio 
calculations. Instead, one has to consider {gje). 

In Table VI, we have tabulated ratios of (gje)o,i 
between pairs of molecules for comparison with experi­
ment. The corresponding ratio for H2 in its v=0, J= 1, 
and v=0, J =2 states is also given. It is gratifying to 

TABLE VI. Ratios and differences of (gje). 

Present 
work Espe's 

Reduced-
mass 

Experiment ratio 

H.<l(gJe)o,l 

H2<g/e>0,2 
H2<gJ«)0,l 

H D ( ^ ) M 
H2{g/e)0,l 

D2<gj-e)o,i 
HD(^)o, i 

T>2(gJe)o,l 
U2(gje)o,l-B.D(gj')o,l 
*H.2(gje)o,i — D2<gj-*)o,i 
Hr>(gJ<)o,l-r>2{gje)o,l 

0.9940 

1.3484 

2.0486 

1.5193 

- 0 . 0 2 1 3 2 
- 0 . 0 4 2 2 3 
- 0 . 0 2 0 9 1 

0.9949 

1.3659 

2.1082 

1.5435 

- 0 . 0 3 1 1 1 
- 0 . 0 6 1 0 5 
- 0 . 0 2 9 0 4 

0.9945 
±0 .0009 

1.3472 
± 0 . 0 0 1 

2.0412 
± 0 . 0 0 3 

1.5151 
± 0 . 0 0 2 

- 0 . 0 3 0 1 8 
- 0 . 0 5 9 7 3 
- 0 . 0 2 9 5 5 

1.00000 

1.33311 

1.99901 

1.49950 

FIG. 1. The variation of Xxp/R2 with internuclear distance. 
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note the excellent agreement between our predicted 
ratios and the experimental ratios. I t is also interesting 
that the ratios predicted by Espe's calculation are in 
considerably poorer agreement with experiment. In 
Table VI, we have listed in the last column the appropri­
ate reduced mass ratios, which in the absence of vibra­
tional motion would account for the ratios of the rota­
tional moments. These values are significantly different 
from our theoretical ratios including the effect of nuclear 
motion. 

The excellent agreement between theory and experi­
ment depicted in Table VI, suggests in the light of the 
inaccuracies of our electronic calculations of the high-
frequency terms using a one-parameter variation func­
tion, that the true ixRe{R) and XX

P(R) curves (semilog 
plots) are merely displaced from the calculated curves 
without change in shape, at least for small vibrational 
displacements. This point appears to be confirmed by 
the plots in Fig. 1, where our calculated curve for X^/R2 

is compared with the variation with internuclear dis­
tance inferred from Ramsey's molecular beam experi­
ments. The constancy of (gje) experiment (gje) cal­
culated depicted in Table VII is also in accord with our 
present contention. 

TABLE VII. (gje) experiment/(gje) calculated. 

Without After 
vibrational vibrational 
averaging averaging 

H2 

HD 
D2 

v=0, 
v=0, 
t>=0, 
0=0, 

/ = 1 
J=2 
/ = 1 
7 = 1 

1.5355 
1.5355 
1.5194 
1.5038 

1.4192 
1.4185 
1.4205 
1.4244 

Average 1.421 ±0.002 

Since one uses the differences in the rotational mag­
netic moments of isotopic molecules in the determina­

tion of dipole moments, it is instructive to compare the 
differences in the (gje)'s for H2, HD, and D 2 with experi­
ment. These results are given in Table VI. I t is seen that 
the results from Espe's calculation agree very closely 
with experiment. Our own results, however, are all a 
factor of 1.421 less than the experimental differences. 

All the results presented in this section are for the 
Morse oscillator. Slightly different numbers are obtained 
with the Dunham potential. However, the same general 
conclusions prevail. Differences between the two sets of 
figures are generally of the order of magnitude of centrif­
ugal corrections. 

V. CONCLUSIONS 

The results of the present work can have the following 
implications. First, the success with which we have 
been able to predict the variations of X^/R2 with inter-
nuclear distance suggests that in general the variation 
of this quantity with R can be accurately obtained by a 
simple variational calculation provided accurate zero-
order wave functions are available for many internuc-
lear distances. Since by this procedure, their absolute 
values will generally not be obtainable accurately, 
ratios of the (X^/R2)^ for different isotopic species are 
more reliable than their differences. The dipole moments 
of some heteronuclear diatomic molecules are sometimes 
determined by variations of the rotational g values upon 
isotopic substitution neglecting the effects of vibrational 
motion. In view of the relatively large vibrational cor­
rections for the high-frequency part of the susceptibility, 
reliable dipole moments of these heteronuclear diatomic 
molecules cannot be obtained from molecular-beam 
magnetic resonance data without vibrational correc­
tions. If such corrections are to be made by an ab initio 
calculation of the R dependence of X^, then the dipole 
moment of the molecule, /xe, should be obtained from the 
following ratio equation: 

MB 

\B?'A-B lfc+& \RJA'B\MA>+ 

ZB H AB\MA+MB U+SBJ \R2e2/ABU+ZB J»N 
~11>AB 

fc 
/ * \ 

{V>R)A 

(20) 

+MB U+SBJ YRWA'BU+SB J». 
~VA'B 

instead of the usual difference equation.12 Considerations of this nature are currently progress for HF, where there 
is presently a discrepancy (about 7%) in the values of the dipole moments obtained from molecular beam electric 
resonance35 and from the rotational moments36 of H F and DF. In a separate communication, we shall show how 
this discrepancy can be resolved employing the approach suggested above. 

35 R. E. Weiss, MIT dissertation, 1961 (unpublished). 
36 M. R. Baker, C. H. Anderson, J. Pinkerton, and N. F. Ramsey, Bull. Am. Phys. Soc. 6, 19 (1961). 


